Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 320: 115816, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932744

RESUMO

Urban water distribution networks (WDNs) in developing economies often refrain from investing in sensor-based leakage management technologies due to financial constraints and other techno-managerial issues. Thus, this study proposes a generalized decision support framework based on network sensitivity analysis (NSA) and multi-criteria decision-making (MCDM) to assess the prospect of effective leakage control through robust sensor placement in existing deficient WDNs. Four sensitivity parameters are formulated for NSA to ascertain the pressure response of the potential sensor positions for diverse hydraulic and leak scenarios. Subsequently, selecting the optimal number of sensors and their relative positions within the WDN is framed as an MCDM problem that entails the simultaneous maximization of Euclidean distances among the potential sensor positions and the leak-induced pressure residuals obtained at these sensors. The proposed methodology is developed on a numerical benchmark network assuming ideal conditions, and its applicability is verified on a sensor-equipped experimental network considering realistic system uncertainties. The outcome of this study aims to provide an insightful understanding of the system behavior that governs its leak localization potential and ascertain the practical challenges of sensor-based leakage monitoring in existing WDNs. Decision-makers of resource-strained utilities can beneficially utilize the proposed framework to assess the environmental and cost trade-offs of employing sensor-based technologies for leakage management and proactive decision-making before its actual implementation.


Assuntos
Abastecimento de Água , Água , Incerteza
2.
J Environ Manage ; 299: 113603, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454199

RESUMO

Hydraulic performance assessment and benchmarking of water distribution networks (WDNs) impose a major challenge to water utilities worldwide. Presently, benchmarking strategies for WDNs are not fully developed, especially for analyzing intermittent systems commonly encountered in non-developed nations. To overcome these limitations, this paper proposes an index-based benchmarking strategy for WDNs, comparing their actual hydraulic performance and expected serviceability. A robust Hydraulic Performance Index (HPI) is developed as a global metric to account for the combined impact of multiple hydraulic outputs, concerning their benchmark values. The applicability of this index is verified on a numerical benchmark network, and its usefulness is demonstrated on a real-world intermittent WDN located in Kolkata (India) by coupling the HPI-based framework with hydraulic models using the EPANET-MATLAB programmer's toolkit. A scenario-based analysis is conducted using extended-period simulation to obtain the HPI for diverse service levels and leakage conditions of the WDN models. The HPI is designed to effectively capture the localized pressure reduction during peak flow, prioritize hydraulic outputs based on regional constraints, and penalize systems with unsustainably high hydraulic output. The developed strategy is also effective in performance benchmarking of WDNs of different nations with diverse serviceability and threshold parameters on a common platform. Finally, the practical efficacy and generalizability of the HPI-based results in the context of case-specific performance management of WDNs, along with limitations, recommendations and future perspectives are elucidated upon.


Assuntos
Abastecimento de Água , Água , Benchmarking , Simulação por Computador , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...